Study Says Cosmic Radiation Could Damage Astronauts’ Brains

NASA Astronaut Scott Kelly is seen inside a Soyuz simulator at the Gagarin Cosmonaut Training Center (GCTC), Wednesday, March 4, 2105 in Star City, Russia. Kelly, along with Expedition 43 Russian cosmonaut Mikhail Kornienko of the Russian Federal Space Agency (Roscosmos), and Russian cosmonaut Gennady Padalka of Roscosmos were at GCTC for the second day of qualification exams in preparation for their launch to the International Space Station onboard a Soyuz TMA-16M spacecraft from the Baikonur Cosmodrome in Kazakhstan March 28, Kazakh time. As the one-year crew, Kelly and Kornienko will return to Earth on Soyuz TMA-18M in March 2016. (PHOTO CREDIT: NASA/Bill Ingalls)
NASA Astronaut Scott Kelly is seen inside a Soyuz simulator at the Gagarin Cosmonaut Training Center (GCTC), Wednesday, March 4, 2105 in Star City, Russia. Kelly, along with Expedition 43 Russian cosmonaut Mikhail Kornienko of the Russian Federal Space Agency (Roscosmos), and Russian cosmonaut Gennady Padalka of Roscosmos were at GCTC for the second day of qualification exams in preparation for their launch to the International Space Station onboard a Soyuz TMA-16M spacecraft from the Baikonur Cosmodrome in Kazakhstan March 28, Kazakh time. As the one-year crew, Kelly and Kornienko will return to Earth on Soyuz TMA-18M in March 2016. (PHOTO CREDIT: NASA/Bill Ingalls)

This is your brain in space — and it does not look pretty. Scientists studying the effects of radiation in rodents say that astronauts’ exposure to galactic cosmic rays could face a host of cognitive problems, including chronic dementia.

The UC Irvine-led study, published in Scientific Reports, adds to a growing body of research on the harmful effects humans may reckon with as they venture out longer and deeper into space, whether on trips to Mars or potentially beyond.

“Recovery of the brain [from] these exposures certainly takes a very long time — so these are very chronic consequences,” said study leader Charles Limoli, a neuroscientist and radiation biologist at UC Irvine. “This of course raises a concern for NASA.”

It’s well-known that radiation can damage neural tissue and hurt cognitive function; cancer patients with brain tumors who need radiotherapy end up with what the study authors called “severe and progressive cognitive deficits.” But it’s not clear exactly what effect space radiation has on the brain because there are different types of radiation and they’re delivered in different doses.

Space is filled with high-energy particles of all kinds that quickly would damage the cells of living things. Luckily, the Earth’s magnetic field shields us from the onslaught; but farther out in space, with only a spacecraft as protection, humans are exposed to much more radiation.

The White House has set a goal of getting humans to Mars by the mid-2030s, and President Obama penned a CNN op-ed this week discussing his support for a mission to the Red Planet. So scientists are increasingly trying to quantify those impacts, with hopes of understanding the risks to long-term spaceflight, and perhaps mitigating or even preventing them.

The NASA Twins Study — which is looking at the changes in former astronaut Scott Kelly’s body after his year in space and comparing them to his brother and fellow former astronaut, Mark Kelly — also includes a battery of cognitive tests in order to study the effects of space on brain function. (People working on the International Space Station, even for long periods of time, would not face the same level of exposure to galactic cosmic rays because the ISS is still protected by Earth’s magnetosphere.)

Limoli and his colleagues already had found significant changes in the brains of rodents six weeks after exposure to space-like levels of radiation, but for this new paper, they wanted to do a longer study to see whether the effects persisted. In a series of experiments involving mice and Wistar rats, rodents were exposed to fully ionized oxygen and titanium particles at the NASA Space Radiation Laboratory at Brookhaven National Laboratory in New York; the animals then were sent to Limoli’s lab at UC Irvine.

The scientists found that even six months after radiation exposure, the rodents still were suffering from brain inflammation and neural damage. Neurons sported fewer dendrites and spines, which meant their neural networks were less interconnected than in a healthy brain.

Of course, rats and mice are not humans, Limoli conceded. But the fact that similar effects were seen in both rodent species indicates that there could be similar effects seen in the brains of other mammal species, including ours.

Click here to read more.

SOURCE: LA Times, Amina Khan